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FOREWORD

The number of publications in the field of pressure vessel stress

analysis has increased precipitously in recent years and the information

contained therein, though pertinent, is, many times, lost in this sea of

literature. In addition, a large proportion of the solutions, as presented,

are not carried to the point where they can be used directly for determining

stress distributioms. The purpose of this report, then, is to make avail-

able a compact and adequate summary of the formulas and to present them

in a readily usable fashion for the stress analysis of pressure vessels that

are commonly encountered in missile design. That such a report as this

derives largely from the work of others is self-evident, and it is the

author'ts hope that due acknowledgement has been made of the immediate

sources of all material here presented. However, while most publications

deal with head closures joined to long circular cylindrical shell sections,

this report places equal emphasis on designs in which the circular

cylindrical shell section is short and is integrally joined to head closures

of different shapes and thicknesses. The equations are organized such

that interchangeability of head closures is a matter of algebraic manipu-

lation. It is believed that the material contained in this report will be

helpful to those involved in pressure vessel stress analysis and will be

particularly useful for members of the Structures Section, Solid Mechanics

Department, who are often asked to appraise pressure vessel design

speedily and yet with sufficient accuracy as to insure a degree of confidence

in their appraisal. The material presented herein can also be used to spot

check stress levels obtained from computer solutions.

The author would like to take this opportunity to express his thanks to

Mr. Walter Smotrys of the Structures Section for his assistance in checking

the algebraic manipulations associated with the preparation of this report.

He also wished to thank Miss M. J. McNeil for her computations of the

frequently encountered parameters and the preparation of the associated

graphs.



Finally, it should be said that, although every care has been taken to

avoid errors, it would be over-sanguine to hope that none had escaped

detection; for any suggestions that readers may make concerning needed

correction, the author will be grateful,

-Vi-



Report No.
SSD-TDR-63-367 TDR-269(4304)- 5

STRESSES IN THIN VESSELS UNDER INTERNAL PRESSURE*

ABSTRACT

Elastic stresses in thin shells of revolution under the action of internal

pressure are presented. The formulas given are developed on the basis

of Love's classical shell theory. The pressure vessel configurations

under consideration consist of various commonly encountered head clo-

sure designs integrally joined to circular cylindrical shell sections which

may be classified as long where the characteristic lengthofP I > 4.0 or

short where p 1c <4.0. In additiontothe membrane stresses, the bending

stresses resulting from forces and moments at the junctures of the heads

and cylinders are also presented. The conceptof edge influence numbers

is used where convenient to express the discontinuity forces and mo-

ments at the junction. Many important parameters are expressed in

graphical forms to facilitate analysis.

*This work completed March, 1963.
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i. INTRODUCTION

In this report. a pressure vessel will be defined as a container that

must withstand an internal pressure, and is in the form of a surface of

revolution with a wall thickness small compared to the radii of curvature

of the wall (h/a g 1/15). It is well known that in every boost vehicle for

space launching and ballistic missile systems, the pressure vessels

comprise a large percentage of the total system structural weight. Con-

sequently, their design merits considerable attention from the analyst. In

flight, liquid systems will be pressurized either by the acceleration forces

acting on the hydrostatic head of the propellant plus a pressure head for

efficient pumping of the propellants to the engines or, in the case of solid
propellants, by the pressure of the burning propellant gases. In this

report, however, attention will be confined to the effects of loadings caused

by internal pressure only.

Pressure vessels with very thin walls which offer no resistance to

bending would be subjected only to direct stresses uniformly distributed

through the thickness. In other words, the wall is acting as a membrane.

The associated stresses are called "membrane stresses."

However, when the wall offers resistance to bending, bending stresses

occur in addition to the membrane stresses. In pressure vessel design,

bending stresses arise as a result of (a) change in curvature, (b) change in

slope, and (c) change in wall thickness. Bending stresses resulting from
these causes are called "discontinuity stresses." These stresses are

obviously most severe at or near the discontinuity. They do not vary

circumferentially because of the presumably axial symmetry of the

structures and decay rapidly to negligible values in a distance I > 4A

measured from the point of discontinuity on the meridional arc.

From the above brief description, it is clear that in order to determine

the complete state of stress in a pressure vessel, it is necessary to find

I



the membrane and the discontinuity stresses. These separate effects may

be linearly superimposed.

It is well known to those familiar with the calculation of bending

stresses in shells that the process involved is both complex and time

consuming. To a great extent, the complexity is associated with the

determination of the discontinuity circumferential shear forces and bend-

ing moments existent at the juncture of head closures and cylinder or at

other discontinuities mentioned earlier. Accordingly, a large portion of

this report will be devoted to the calculation of these discontinuity forces

and bending moments. The concept of edge influence numbers is used

where convenient for this purpose. (By "edge influence number" is meant

the displacement or rotation of the edge of the shell due to unit values of

the edge bending loads or unit values of the pressure.) This concept is not

new. Indeed, Miiller-Breslau used it many years ago for beams, trusses,

etc., and other authors have extended it to shells, such as the works of

Galletly (Ref. 1); Watts and lang (Ref. 2); Taylor and Wenk (Ref. 3); to

mention a few. Having the edge influence numbers will greatly simplify

the stress analyst's task in formulating the compatibility equations at the

junctions of head closures and cylinders.

Appropriate expressions have been included in this report to permit

the determination of strecs distribution throughout the shell.

The following assumptions are employed throughout this report:

(a) The material under consideration is assumed to be a perfectly

elastic, homogeneous, and isotropic solid.

(b) The load is assumed to be entirely due to internal pressure, so

that support, dead weight, and similar loads are completely

neglected in this report.

(c) All heads are considered to be complete (without holes) and to be

free from any stress raisers other than the head-cylinder

juncture itself.



S f
(d) Each cylinder and head closure is assumed to have uniform

thickness (although the thicknesses need not be the same).

(e) The middle surfaces of the cylinder and head at the juncture

are assumed to be continuous.

Before we proceed to the main portion of the report, it is important

to recognize that the formulas presented are derived on the basis of the

elastic behavior of the shell materials, so that when the highly localized

discontinuity stresses calculated by these expressions exceed the elastic

limit of the material, local plastic deformation in the region of the junction

of the cylinder and head will take place. This plastic deformation prevents

stresses of the calculated intensities and, in areas where it is possible for

plastic flow to occur, the maximum stress may be limited; the high peaks

indicated by elastic analysis will generally be redistributed and increase

the stress at nearby points.

One might therefore challenge the value of the elastic analysis. The

following statements may be made in its defense:

(a) The high stresses indicated by elastic analysis are valuable

since they point out potential trouble spots.

(b) The elastic analysis is needed to define the areas where plastic

flow may occur.

(c) Although high local stresses in steel or aluminum vessels are
frequently relieved by plastic flow, a good design cannot. always

rely on ductility as insurance against the bad effects of sharp

corners and other stress raisers. For low temperature

operations, some normally ductile materials become brittle

and failure as a result of this brittleness can occur.

-3-



Z. MEMBRANE THEORY SOLUTIONS

A tabulation of Membrane Theory solutions for pressure vessel

configurations of practical interest under the action of internal pressure is

offered in this section.

2.1 Thin Circular Cylindrical Shell Under Internal Pressure

I'L

tou

where u0 = hoop membrane stress

r = meridional membrane stressx

u = radial displacement

p = uniform internal pressure

-5-



a a mesn r&tus of curvature

h a shell thickness

E a modulus of elasticity

v • Pois.ion's ratio

2.2 Thin Spherical Shell Under Internal Pressure

e,/

2U -F- - (I - V)ur
r ZEII

where w. = hoop membrane stress

F = meridional membrane stress

ar = radial displacement

p = uniform internal pressure

-6



a w mean radius of the spherical shell

h a shell thickness

E a modulue of elasticity

v a Poisson's ra•io

2.3 Thin Ellipuotdal Shell Under internal Pressure

1 .

-• - - -

b2

42 42•]31,2
m2 -- b

-7-



pR 1

A xZ zb y2) 1/2

Zb h

pRI !*?(I Ri)

Pa4 x2 +b4 21/2/ a 4b2~•.• x + bay)x + b

2b.h

R0

Ur = -(a. " .;( )

= • -. (2. -v)(a 4 x2 + by 2 )-a 4b2 J
rb Eh0

(a) At the equator: y = a, x 0, * 900.

p 2

0Qh 2--
Lb)

rZEh1  byj

(b) At the top: y 0, x =b, 00.O

a

u 0
r3

-8-



I
where rg = hoopmembrane stress

4' a meridional membrane stress

u1 u radial displacement

p a uniform internal pressure

a a semi-major axis of the ellipsoidal head, measured to the
middle surface of the shell

b x semi-minor axis of the ellipsoidal head, measured to the
middle surface of the shell

h a"shell thickness

E z modulus of elasticity

v z Poisson's ratio

RI

Principal radii of curvature of the ellipsoid

Cartesian coordinate system
xyj

2.4 Thin Conical Shell Under Internal Pressure

d

.9-



wJ

o'0 =•tana

q C tan a

u=ps2 sin a tan a
ur Z Eh IZ -V)

where wr a hoop membrane stress

wr z meridional membrane stress

Ur = radial displacement

p = uniform internal pressure

h = shell thickness

s = distance of a point of the middle surface from the vertex
measured along a generator

E = modulus of elasticity

v = Poisson's ratio

-10-



S 2. 5 Thin Elastic Sinmly Supported Circular Plate Under Uniform Load

Over Entire Surface

a

3 aAt R:.•

M=•--ar'[(3+ v) - (I+3v) R

z r 2 4

z: 3D 1 "Va (S++ R (I v' R (3" v]

-11-



At center: r, rr 0 , and y attain their respective maximum values, and are

given by:

S(3 + v)
1rmax max 8h

=3pa4 (1 - v) (5 + v)
16 Eh

where w = unit stress at surface of plate in the radial direction and is
positive with tension at the lower surface and equal compression
at the upper surface

= unit stress at surface of plate in the tangential direction and is
positive with tension at the lower surface and equal compression
at the upper surface

y = vertical deflection of plate from original position and is positive
for downward deflection

p.= uniform pressure over the surface of the plate

h = plate thickness

E = modulus of elasticity

v = Poisson's ratio

a = outside radius of plate

R = distance to any given point on surface of plate

-12--
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3. BENDING THEORY SOLUTIONS

A tabulation of Sending Theory Solutions for pressure vessel

configurations of practical interest under the action of various edge loads

is offered in this section.

3. 1 Circular Cylindrical Shells

The following signs convention for the rotation and deflection are used:

Positive Deflection - radially inward with respect to the

center line of the cylinder

Positive Rotation - clockwise vieviing the upper cut of

cylinder

These signs are graphically represented below:

Signs Convention

The following nomenclature is used in this section:

q: meridional stress

go = circunferential stress

u a radial displacement

0 Q slope

-13-



D flexural rigidity of the shell

Eh 3

-"12(1'-v •

Where * signs occur in the expressions for stresses, the upper sign refers to

the inner surface of the cylinder and the lower sign to the outer cylinder.

The following notations are introduced for convenience:

Notation Description Plotted on Page

a01 e" x sin Px 63

c2 e"[x Cos Px 64

a 3 e' PX(sin Px + cos Ax) 65

N4 e- PX(cos Px - sin Px) 66

05 sin Px sinh Px 67

16 sin fx cosh 13x 68

07 cos Px sinh px 69

0'8 cos Px cosh Px 70

sin 4 sih71

09 sin 01 + sinh m7

sin cosh 72

010 sin 531 + sinh PT

cos sinh -
il sin Al +sinh PT

-14-



Notation Description Plotted on Page

cos 4cosh I4
t'Iz min Of"+'er' BUF

sinh pl - sin of "5

1I3 sin of + Binh pI

cosh pf + cooA 76
t•14 sin pi + sinh pl

cosh pf - Cos 77QI5 ~sin pi + sinh p! 7

sinh 01 cosh Of - sin Of coo OL 78
16 msinh A PI sin 4 O

sinh pA cosh Of + sin of coo of 79
17 sinh z Of sinz pA

cos Of sinhpl - sin el cosh PA 80
sinh zt - sin AOf

coo Of sinh Of + sin elcoshh ,1
19 ~sinh z O - sin pA O

s0nh2 20O + sin 2fA 8z
il20 sinhz Of - sin pi

sin Of sinh Of 83t21 sinh z Of! - sinz A O

91 in2 PI• 84'n2z sinhz pO -sin & O

023inh ! as
sinhz P - sinz Of

-15-



3.l.a Uniform Radial Shear o Lb Per Linear Inch of Circumference

at End of Long Circular Cylindrical Shell

60o

zo
+. -

00

-TIo

00

r 2p D

Qo

0rx-): 0 -
20 D

Qo

00

ZP D



3.1. b Uniform Radial Moment M In-Lob Per Linear Inch of Circumference

at End of Long Circular Cylindrical Shell

A =- =-r

GM 0

=h

ZMo ( 3 v +Zag 4)

M0
ur = 4-

M 0

u ~Mo0

O(x=o) =

(-17

-17-



3. 1. c Short Circular Cylindrical Shell Bent by Forces Distributed Along

The Edges 3
1) Equal Edge Forces

0

ciz

I Z

(r A-

Phh

•x.= ••h-•1 8 Q9 - -5I4Qo 0 +3v

0 -F-I•- 5~ (59 PI"Z',ti . •:,- ("889 -"5017.)I

00
u r 5 "n3 159 + 11 8 a12)

0 - 79 + "12 1 6 (g09 - 1).

Ur(x=-/- =1 . 2p3 D 14

0-8 (x 0 -18-D 1



Z) Unequal Edge Forces

01-

QQ 1

,, , 7•4&1(,QQ 1)-.

V-9- 
( A .& al

2 p C> + ( SfLqg;Qg4 .nL 16a Y c)

-19-



j

Ur(x=O) = " • (n1802 + 0 16 0 1)
2A D

0(x:0) = " zp DZz~
1

Ur(x~f) 1 . T (a 1 6Q2 + 01801)
2J3 D

1
O(x~ = = (02oQC - Zn20Q1 )

3. 1. d Short Circular Cylindrical Shell Bent by Moments Distributed

Along the Edges

1) Equal Edge Moments

t~A 0 I z
a F4-

-20-



, 'A F, , ! II I i

., • . * ,.-• [(y,, i,.).i- (i,,-.ftif]

" -.L A (,.I ,)

Ie

(RI , A?+Al-
~lo MA

2) Unequal Edge Moments

a.
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II IA

t- I5 (MAI'7, MZSL19XI1e'*I)4 AVA(M 1 ,

+

--.. ..

e

- ~-i[M.R:- zt.,AA 21 ]

1> (M.A- 7 -M ,,) -

3. 2 Shells of Surfaces of Revolution

The following signs convention for the rotation and deflection are used:

Positive Deflection - radially inward with respect to the axis
of revolution of the shell

Positive Rotation - clockwise viewing the upper cut of the
shell

-22-



The nomenclature used in this section is:

WO = meridional stress

go = circumferential stress

u r radial displacement

9 : slope

S= angle between axis of revolution and norm al to wall

R = mean radius of circumference of discontinuity circle

RI = radius of curvature of the section perpendicular to the meridian
at the point in question

R2 = radius of curvature of the meridional section

4 3(l-vz)

R Ih

D flexmal rigidity of the shell

Eh
3

12(1-v

Qo = uniformly distributed circumferential shearing force at the
shell edge perpendicular to the meridian•

M4 = uniformly distributed circumferential bending moment at the
shell edge

= distance measured along the meridian of the shell from the edge
to the point in question and is positive away from the junction.

E= summation

v Y Poisson's ratio

-23-



The signs convention and the pertinent notations are shlowt below: j

Signs Convention and Notations

Principal Radii, of Curvature of Shell

-24-



Q.

Notations in Shell Analysis

Where * signs occur in the expressions for stresses, the upper sign refers
to the inner surface of the shell and the lower sign to the outer surface of the

shell.

3. 2. a Uniform Normal Shear 00 Lb Per Linear Inch of Circumference

at End

-25-



6RQO J•.- 4.

h' I

20 2 ~ 2  3(lV )Cot 0
=io -- a IE- * vRfl~ w 03111r =-- 2 lp RqI 21•A

uo n0 00 - v cot o
Ur(lO) -. ZPR 0)

Q0 sin o0
(t=o) - 2p D

3.2. b Uniform Radial Moment M In-Lb Per Linear Inch of Circumference0

at End

-9

-26-



6RM
el= -- R 3

SR1

M. 0
U r(tO) - sin

M
0l~) 0 •--

In applying the above formulas for the determination of stresses and

displacements for shells of surfaces of revolution, we note the following

geometrical relationships for two of the most commonly encountered head

closure designs; viz. , (i) full hemispherical head closure; and (ii) full

ellipsoidal head closure.

(i) Full Hemispherical Head Closure

-27-
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If a is the radius to the middle surface of the hemispherical shell, we have J
the following geometrical relationships:

R R2 =R a

4 3(1- v 2

ah

0
0 90

sin o 0= I

cot o 0

(ii) Full Ellipsoidal Head Closure

-28-
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Let a and b represent the semi-major axis and semi-minor axis of the

ellipsoidal head closure. Then the followimg geometrical relationships exist:

aZb2l~i • b 1 311
(az sin q+b c Cos

4 4(a4y2 ÷ 14xZ) I/2

bz

2
R 2 z : z ) 1 7 7

(a sin # + b co. 0)

=(a yz + b xZ)

a~b

R=a

o 0 90°

sin =1

cot = 0

dt R•zd

For the case in which the shell of surface of revolution is a right circular

cone, the formulas for stresses may be more appropriately represented by

the following expressions.

-29-



3. 2. c Uniform Radial Shear o Lb Per Linear Inch of Circumference at

End of Right Circular Conical Shell

ICA

"S z

w h e r e C ---

QoSe., ?, 1- I. be:; i. zv[Qe.:, ;.)¶i Ie~L3 - V [( -

S4

-30-



3.2. d Uniform Radial Moment M In-Lb Per Linear Inch of Circumference
0

at End of Right Circular Conical Shell

:;sI same expressions as for case 3. 2. c except

C.4 mell so ev2.

•rIt

h{.(~~~vi~J . M.r * 'he~ be- .

Cz=

-31-



3. 2. e Bending Stresses in Cone Loaded by Uniform Internal Pressure p

When there are no edge shears or moments, but the edge support

condition is such that it is not the same as that necessary for the membrane

condition, bending stresses will be introduced. The magnitudes of these

stresses may be obtained from the following equations:

C41 ;e 1 -2-( + k

OS4I[zev ? 7P(z % , S;2 )]*

C 6, e -a- (Z 1cI+VI evt v ý1,v )fI.

where 2

{z

4{.(6er .6eV-" 1. +be+2V b .S.+ (b-

-32-



I
3.3. Circular Plate with Uniform Edge Moment M. In-Lb Per Unit Inch of

Circumference

6Mo M

At Any Point: or 6Mr
=h upper sign refers to the inner surface

6M| and lower sign to the outer surface.

=h

6 (l- v)(a2- R ) M0
Atft: ¥ Eh3

-33-



6(1 - v) a m 0

At Center: Ymax 2 Eh 3

12(1 - v) aM

At Edge: 0 ov

-Eh3
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4. SOLUTIONS FOR DISCONTINUITY SHEAR FORCES
AND BENDING MOMENTS

A tabulation of solutions for discontinuity shear forces and bending

moments for pressure vessel configurations of practical interest under

the action of internal pressure is offered in this section. The positive

sense of these discontinuity forces is defined in each of the figures

associated with the particular pressure vessel configuration investigated.

The following nomenclature is used in this section:

a = N-mean radius of curvature of the circular cylinder, inches;

p internal pressure, psi;

E = modulus of elasticity, psi;

v - Poisson's ratio

Q0 = uniformly distributed circumferential shearing force at
the junction, lb per inch;

M = uniformly distributed circumferential bending moment at
0 the junction, in. -lb per inch

h = shell thickness, inch;

4 3(1 - v )
a7~

Eh.3
D. -- h.

12(1 - v )

- flexmal rigidity of the shell

4. 1 Two Long Cylinders of Unequal Thickness

Fig. 4. 1. 1. Two Long Circular Cylindrical Shells of Unequal
Thicknesses under Internal Pressure

-35-



Q0

Fig. 4.1. 2. Forces and Moments at the Junction of the Two Long
Unequal Thickness Circular Cylindrical Shells. J

zOI~ o (c - i)(c5/Z + 1)
S=T ( + 2 + c3/ ++ ) ; (h2 >1h2 )

4I2Mo (c - l)(cz 1) ;(hI > h}
:,=VI (c + 1) 4- 2c 3/(c +

where c = thickness ratio hl/h

The above equations are presented in graphical forms on Pages 59 and60.
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4. 2 Two Long Cylinders of Unequal Thicknesses and Mismatch of the

Middle Surfaces

"CL I I pa.
A

Fig. 4. 2. 1. Two Long Circular Cylindrical Shells of Unequal
Thicknesses under Internal Pressure with
Mismatch of the Middle Surface

2-(c - l)(c5 Z + 1) + dampic 2(c1/ 2 + 1)
QC) FT 2 3/Z n

0 (c + 1) + 2c (c + l)

2-v - 2) 1 Z 1/2.1- c Mc -l)(c +) +-damC cc c 1)
2 mn

M 0.1 40 1 (cz + 1)z + 2c 3/Z c + 11 P

Mo, 2  M 0 1 +dpam

where c thickness ratio h1/h2
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Graphs of Qo0dam Iplp and ZM0 , l/damp as a function of hI/h 2 are presented

on Pages 61 and 6Z. The Q and Mo, 1 thus computed may be superposed to

those calculated for Case 4. 1.

4.3 Long Circular Cylinder with Circumferential Ring Stiffeners

4z.

>9

Fig. 4. 3. 1. Long Circular Cylinder with Circumferential
Ring Stiffeners under Internal Pressure

MO Q.

t I
Q0 ~

Fig. 4. 3. 2. Forces and Moments at the Junction of the Circular
Cylindrical Shell and the Circumferential Ring
Stiffener
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Qo = Z2M

4. 4 Long Circular Cylindrical Shell with Many Equidistant Circumferential

Ring Stiffeners

A, c(Twft)

Fig. 4.4. 1. Long Circular Cylindrical Shell with Many Equidistant
Ring Stiffeners under Internal Pressure

[a (I__h______+_a' __+__

h0b ÷ aZ÷

o40n [h/b' + I) + a14-02O3

Qo= 2pnl 5 Mo
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where a sinh 1 - sin B fwhre•13 :sinh B I + sin Bf

cosh 0I + cos of

14 =sinh p + sin G=

cosh of - cos of
is5 =sinh p - sin =5

Graphs of a13 , 1 1 4 andf?1 5 are plotted on Pages 75, 76, and 77.

4. 5 Long Circular Cylindrical Shell with a Flat Head Closure

O• Q.

7 7 7 7 /- 7/N.-

IM.
Qe Q.

Fig. 4.5. 1. Long Circular Cylindrical Shell with a Flat Head
Closire under Internal Pressure. The Forces
and Moments are shown in the Positive Sense
above.
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C (a3 " a4 ) (b, - b4) + b3 (a4 ) Io-ZL(a I a S) (5z -Ibs (a 2 aZ- 6) (b,- b 4)]

(a41- a3) (b 2 - bs) + b3(a 2 "a6 ) a

M° 4pa' ' (a, - a,) (bj "bs ( a. --a6} {b "4)

where a=6- (I-v) b 6( v)

a -= 20( - v) 3(l - v)

3a {I-V)
a3 -Tb 230-v

a 3(z -v)

b4 = 26a(h2 hA1 )2

a5  2 h-2-2a2 b I(hz/h)2
h,55 T 2 1

h z 143(l - v2
a6 'h-l pa =a zhZ"

-41-

I



4. 6 Short Circular Cylindrical Shell with Equal Thickness Flat Head

Closures

Q A M 0  0 .N ~

me MOM

N.

Gso

Fig. 4.6. 1. Short Circular Cylindrical Shell with Equal Thickness J
Flat Head Closures under Internal Pressure. The
Forces and Moments are shown in the Positive Sense
above.

r a -a)( ba)+b(a Q - a)
Q0 = Zp (a 3 a 4 )b-b 4 2 15) b 3 ( 5 13 .1 I

S L(al. a S1 3 ) (b2" b51 3 ) . (a 2 -a 6(6 14 ) (bI . b4 f415 1

= 4pa2 (a4- a 3 ) (b2 - b5 0 13 ) + b3(a 2- a6 0 14 ) 1

Mo( (a "-aS1 3) (b2 -b 5 l 3 ) " (a2 - a6 "Q14 ) (b "b41215

where aI through a6 , bI throughb 5,and P have been previously defined

(Case 4.5) and R13, S114' and 115 are defined in Case 4.4.
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4.7 Short Circular Cylindrical Shell with Unequal Thickness Flat Head

Closures

Q1I

M1 M1Q•Q

Fig. 4.7. 1. Short Circular Cylindrical Shell with Unequal Thickness
Flat Head Closures under Internal Pressure. The
Forces and Moments are shown in the Positive Sense
above.

P's A,.l,., A 1,. Fkf• NS's1,C 1.A

2. rt' 4r1'. ..ro 2 pO

Q AAq~I7 -A ~A;' -N

L.. 
.. .4

L ,,L
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--I Y l

A 2  = 2 h p 2a 2  AI2 = 2 (1 - v)
A2 h'22

3aA1 3 -- (1 - v)

h,1 16hl• 1

A3 = "h 1 a

6a v)AI 4 =-( -ih )

A 23
4 A 1 5 = 2(1- v)

A5 ~-2-h3 02a 2 3 )
A5 h2 2  (I3a

A 6 (1 -v)

6 h 2

(hi)2 3(1 - v)
A \h 2 A 2

A2A = - 3s A 0)
8 2 h219 160'-hlh2

h 2 6(1 - v)A9=20a( 3) A2 0 p=6(1-ih)

2 A = 3(1 - v)

A I h3) 21 26 zAh2A1O 2 h 2•h

3(1 - v)

22 160 2h 3
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I

sinh Of cosh Of - sin O1 cos at and is plotted on Page 78.1J ill6 : sinh2 1O s - of

sinh Of cosh Of + sin Of coo 01 and is plotted on Page 79.
917 = sinh zO - sin 0o1

cos PO sinh Pf - sin at cosh 01 and is plotted on Page 80.
~18 z .20i'•18 = sinhZ pf sin--Of

sin .3O cosh Of + cos of sinh of and is plotted on Page 81.
19 sinhz pf - sin2 zO

Q eOnh 2 Of sin 2 and is plotted on Page 82.

uz sinh $3o - sin zof

.sin O sinh and is plotted on Page 83.21sinh2 PI - sin2 pf

4.8 Long Circular Cylindrical Shell with an Ellipsoidal Head Closure

Qo e

Q.

Fig. 4.8. 1. Long Circular Cylindrical Shell with an Ellipsoidal Head
Closure under Internal Pressure. The Forces and
Moments are shown in the Positive Sense above.
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J

afc~ pC C) 
+

"______, __- _____-, ___ ,=, -. - - •J

where 
4 3(1 - 2)

Eh 3

whreD3 Eh1

D 12 (1 - vI

The above expressions for Q and M are plotted as functions of hIAh2

on Pages 59 and 60.
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4. 9 Short Circular Cylindrical Shell with Equal Thickness Ellipsoidal

Head Closures

Qo N-4 L
'I l a

Fig. 4.9. 1. Short Circular Cylindrical Shell with Equal Thickness
Ellipsoidal Head Closures under Internal Pressure.
The Forces and Moments are shown in the Positive
Sense. above.

Q0 a (a 3 - a 4 ) (b1 - b4 S) Q J
lo p (a a 5 S21 3 ) (b2 - bs25 ) ta2- a 6 Q.21 4)(b I. b4 1R1 5 ) J

-47.



where a2 - e 3 (1 " v2) =( -La vz)
I h)r3(I v ) bI~

a c a 1

h1\8a/

a h 23(I/

4 eZV3(1 7)

h ah

a6 "• O a 2h9
a5 -- 2 -- v

5 c

4 3(1 - v2)

e2  ah
a 6 hi C1

2

sinh PI - sin • and is plotted on Page 75.
13 = sinhOf +" sinRT,

4 cosih p I + cosi and is plotted on Page 76.

5 cosh t -cosi and is plotted on Page 77.
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4. 10 Short Circular Cylindrical Shell with Unequal Thickness Ellipsoidal

Head Closures

SG I

M 1 1 , % M 1.

0 1LL

Fig. 4. 10. 1. Short Circular Cylindrical Shell with Unequal
Thickness Ellipsoidal Head Closures under
Internal Pressure. The Forces and Moments
are shown in the Positive Sense above.

A21 20-All A2PZl %A 16 -A12 Afl 18 AA

M 4pa pa" pa Zpa 13

'5 2 1 A5 Z0A 14 A6p18 a6 16 "A15M2  2pa' '±paZ Zpa Zpa 1'6 = A4

AM AA A~Al -
717 17 -p 79 820 18 - A821 4

ZZZZpa Zpa4pa 4pa

A ll 1-9 A -.ZI

7___ 97 1. *19 1'0 218 A 0 ~ 0 - 2
Ql a . . ..... 2- pa0

4pa 2  4pa
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where

•, : -• • -/ ,• -- • ;, 3(1-v I,

A hi A V3a (

"( I4J 3(JI_)A4 3 C A 1 3 35 2
h 3

h• 
1 a

A- A T3 3(I-)4 RZ (i~v-)15 = P 30 h3

h3 2 2 
aA 5 = P-ca A = Z-

A6 3 P • a A 0 = -• (1 -vo

=- c 317 = = V3 (

p chh 2 2

h h

A - -ZP-1 A 1 = - 3( 1- v

2 17o 2

c 2

Z030 - -

-h A19 =h = 3(I-v Z

h 3()

h h
A = 3 4a r

10 h 3(1 - v )

The functions Q 16 through 0 are identically defined as ithose for Case 4.7.
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4. 11 Long Circular Cylindrical Shell with a Hemispherical Head Closure

t M. O

Q. e

Fig. 4. 11. 1. Long Circular Cylindrical Shell with a Hemispherical
Head Closure under Internal Pressure. The forces
and moments are shown in the positive sense above.

ze Irk \ ,

(A_ _ __ _ _ _ (ýL.7 Zc[ o 4 1 1[+ 11 1- -L

where0
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4. 12 Short Circular Cylindrical Shell with .qual "'hiclene-ss hrrmispheric'id )
Head Closures

0.G. Q. ,

Fig. 4. 12. 1. Short Circular Cylindrical Shell with Equal
Thickness Hemispherical Head Closures
under Internal Pressure. The Forces and
Moments are shown in the Positive Sense
above.

The formulas for Qo and M for this case are identical to those for Case 4. 9.

The dimensionless influence numbers al, a, . , bI, • . . b 5 etc.,

are also identical with the exception of a 3, where for this case,

I
a3 :--•(I-v•)

-58
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4.13 Short Circular Cylindrical Shell with Unequal Thickness tlemispherical

Head Closures

MzM

Fig., Q Q

Fig. 4.13. 1. Short Circular Cylindrical Shell with Unequal
"Thickness Hemispherical Head Closures
under Internal Pressure. The Forces and
Moments are shown in the Positive Sense
above.

The formulas for Q01 Q29 Mi and Mz for this case are identical to those

for Case 4. 10. The dimensionless influence numbers A1 3 and A1 6 must,

however, be changed to the following

13 = A16 - -8(1 -
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4.14 Long Circular Cylindrical Shell with a Conical Head Closure U

Q0

Qo a

Fig. 4.14. 1. Long Circular Cylindrical Shell with a Conical Head
Closure under Internal Pressure. The Forces and
Moments are shown in the Positive Sense above.

GL 6.[ ( Co +c) i (11.54 QC)( 6-) 6 1)

-(01 + C)( s-6z)* (t61- 64)(aCt a.)J

where a 6= .

0
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Graphs of al., 1,, h,, and h ;is~ a function of arid ti for v of (*30

are plotted and are presented on Pages 8 6 throtigh 89,

4. 15 Short Circuilar Cylindrical Shell with Unequal Thickness hfead Clostires

of Ellipsoidal and Conical Shape

GLL

Fig. 4. 15. 1. Short Circular Cylindrical Shell with Unequal Thickness
Head Closures of Ellipsoidal and Conical Shape under
Internal Pressure. The Forces and Moments are
shown in the Positive Sense above.

A7_TL__A, - zi

Q ~AhSAU As~ci,?l A PNAI,,t a. -
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( a(
wherh A2 =-

_22 .l••

A 2  h A8

A5 3 . •A 2 3
W2 9

h5 31 - v\ 22

t4 -2 pC A1  1 h3(

A . •/1 2a

AI( 
4 3(Z)v

13 8 J2ah
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0
The functions 016 through n21 are identical to those defined in Case 4.7.

4.16 Short Circular Cylindrical Shell with Unequal Thickness Head Closures

of Hemispherical and Conical Shape

1, Z.M 1M2 z •

' l----

Fig. 4. 16. 1. Short Circular Cylindrical Shell with Unequal Thickness
Head Closures of Hemispherical and Conical Shape
under Internal Pressure. The Forces and Moments are
shown in the Positive Sense above.

The formulas for QI' Q2' MIP and M2 for this configuration are identical to

those for Case 4. 15 except that A1 3 is now defined by

1(3

A13  8 v)
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5. GRAPHICAL PRESENTATION OF PERTINENT
PARAMETERS

1.0 m ~ .m r

.7-

0- L- 4. L

C,,

h2.. . . . . . . .. . . .

4i, 1, 1. 
-ai , 1 en1ing Mo et ih T ic n s7 ai o

Tw ogClnrclSel of Unequal Th icns
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Fig. 5. 2 Variation of Ju~nctu~re S'ý-e, ring Forces w;-I Tr~ckness Rt-;.o for
Two Long Cylindrlc4]a S)~ells of Urieq .il Tl-.-.cknese
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Fig. 5. 9 Variation of P5 with px
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Fig. 5.11 Variation of [27with AX
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Fig. 5.13 Variation ofa 9 with P1
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Fig. 5. 14 Variation of a 1 0 with PI
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Fig: 5. 18 Variation of 114with Al
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APPENDIX

DERIVATION OF FORMULAS

A. BENDING STRESSES IN SHELLS

1. Symmetrical Deformation of Circular Cylindrical Shells

The differential equation governing the symmetrical deformation

of circular cylindrical shells in accordance with the classical shell theory is

(D +7 U Z (A. 1.1)
dxa

wkIere D flexural rigidity of the shell

.3
- Eh (A.1.Z)

1201 - V2

Z = load intensity

h = thickness of shell

a = mean radius of curvature

E = Young's modulus of elasticity

v = Poisson's ratio

u = radial displacement
r

In the case of uniform shell thickness, Eq. (A. 1. 1) becomes

D d Au ol E (
2 r+ (2 lr3Z

dx a

A-1



Using the notation

4 Eh 3(l - v(A.1.4)

4a D a h

Equation (A. 1. 3) can be represented in the simplified form

d4u

r 44 Ur Z= (A. 1. 5)

dx

for which the solution is

Ur = ex (C 1 cos Px + C2 sin Px) + e X (C3 cos Px + C4 sin Px) + f(x) (A. 1.6)

In Eq. (A. 1.6), f(x) is a particular solution and C1 , C2, C , and C4 are the

constants of integration which must be determined in each particular case

from the conditions at the ends of the cylinder.

The expressions for the membrane forces, bending moments, and transverse

shearing force associated with the symmetrical deformation of circular

cylindrical shells are

N Eh(~~~

M= -E-

x 2 .

dxu

Mx =Ddx2r

(cont.)

A-Z



d2 uM 0 = V -rD- -

dxc

d3 u
r

Qx D= D--(A. 1.7)
dx

In the case where there is no pressure Z distributed over the surface of the

shell and if the end condition is such that Nx = 0, then f(x) = 0 in Eq. (A. 1.6).

Furthermore, for long cylindrical shell@ subjected to loading conditions such

that for large positive values of x, the deflection is finite, C1  C2  0 and

Eq. (A. 1.6) reduces to

Ur = e'Px (C3 cos Px + C4 sin Px) (A. 1.8)

For N x 0, the first expression of Eq. (A. 1. 7) givesx

du u
X = V -a-

- - a

which when substituted into the expression for N. yields

EhuN a r (A. 1. 9)

The stresses in the shell are given by the expressions

6 M

h

NO 6Mo

W- N -6 (A.1.10)
h

A-3



where o" = meridional stress

og = circumferential stress

2. Coordinate System and Signs Convention

The following signs convention for the rotation and deflection are

used throughout, this report:

Positive deflection - radially inward with respect to the center-

line of the cylinder

Positive rotation - clockwise viewing the upper cut of the

cylinder.

The signs convention for the forces and moments are:

Positive shearing force - upward on the left end and downward on

the right end of the shell element, the

left end being at the plane of the origin.

Positive moment - tensile on the inner surface or com-

pressive on the outer surface with

respect to the center-line of the cylinder.

The above signs are graphically represented in Fig. A. 2. 1.

A

A-4



N• + OL +÷It

Fig. A.Z. + - Coordinate System and Sign4 Convention

3. Long Circular Cylindrical Shell under the Action of Uniform

Radial Shear Qo Lb/in, of Circumference at End

Ao5



In the case of a long circular cylindrical shell under the action of uniform

radial shear Ql Ib/in, along the circumference at the end, the two constants

of integration C 3 and C4 in Eq. (A. 1. 8) are determined from the conditions

at the loaded end; viz.,

/dZur

--=0 D 7d' A=_0(A3.1
(4 = - = 0 (A, 3.1)

( _-o--- - -~ 0°oA

Specifically, they are

Q

C 3 33 D

C4 = 0 (A. 3.3)

These values of C3 and C4 may now be substituted into Eq. (A. l. 8) to give

0 e- ox Cos P3xo s~
Ur- (A. 3.4)
r Zp3 D

The successive differentiations of Eq. (A. 3.4) are

du 0 e"Px

r D (sin Px + cos Px)

(cont.)
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d2  Qoe'4 Ax sin Px
PID

dxu
d 3u 0 e'Px

S:- = (Cos O~x - sin P~x) (A. 3. 5)
ax

The slope is therefore given by

dur = 0 -Ox2 = • (sin Ox + coo Px) (A. 3.6)

ZA D

and at the loaded end, x = 0; therefore,

(x=°) -0 (A. 3.7)

The expressions for the bending moments M x, M., and the transverse shear

force 0 are, in accordance with Eqs. (A. 1. 7), respectively,

x0

o -PX
Mx = T sin Ax

=vO° e"x sin Ox

O•x = 000-Ox tenx Bx - sin Sx) (A. 3.8)

and the hoop force, N., according to Eqs. (A. 1. 9), (A. 3.4), and (A. 1. 4)

becomes

No = ZOoPae'AX cos Px (A. 3.9)
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The expressions for the stresses in the shell aie therefore

6Qo .O
rx -:7 e• sin Ox

fr = 7"E-- (Aa coo Ox I sin x) (A. 3. 10)

The maximum deflection is at the loaded end, where

Qo
U Ut(O = 0. (A. 3. 11)rmax = r(x=O) =A . 1

ZP D

Let us now define

nlI e•"x sin Px (A. 3.12)

02 e="x coo Px (A. 3.13)

"f3 =ex (sin Ox + cos Px) (A. 3.14)

Then, Eqs. (A. 3. 10) become

6Q
0' = "

21 o

2 -0 3 (A. 3.15)
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and Eqs. (A. 3.4), (A. 3.6) will become, respectively,

Qo
a r " 2 (A.3. 16)

Qo
Q = • f(A. 

3. 17)
zo D

In Eq. (A. 3. 15) where * signs occur, the upper sign refers to the stress

state at the inner surface of the cylinder and the lower sign to the stress

state at the outer surface of the cylinder.

4. Long Circular Cylindrical Shell under the Action of Uniform

Radial Moment Mo*in. -lb/in. of Circumference at End

In this case, the constants C 3 and C4 in Eq. (A. 1. 8) are determined from the

following boundary conditions:

(M 0 = " D(07 = )

x) 7d. )x=O

= - = 0(A .4 . I)

=0 dx =0
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Upon application of these boundary conditions to Eq. (A. 1. 8), there results

M
C 0

C3: - =

2P D

M
C4 _ 0o (A. 4. 2)

ZP D

With these values for C 3 and C4 , the expression for the deflection Ur becomes

rr
M

Ur o -Pe-x (sinOx -cos Px) (A. 4.3)
2I37D

The successive differentiations of Eq. (A. 4. 3) are

du M
VDo -e coo

2M
d-gr --0 "

di- *ur oeP (sin Px +cos Px)
dxz

d3ur 2M0 Pe' x sn (A. 4. 4)

dx D

living for the slope

du r Mo
e cos PX (A. 4.5)
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The slope at the loaded end where x 0 is, therefore,

Mo

o -- •"(A.4.6)

Equations*(A.4. 3) and (A.4.4) may now be introduced into Eqs. (A. 1. 7) and

(A. 1. 9) to give the following expressions for Mx, Mo. *X and No. Indeed,

M = M 0 •eX (sin Ox + coss x)

MB = VMo e'Px (sin Ox + coso x)

Ox = -2Mo~e'pX sin Px

NO = 2Mo2 ae'Px (cos Ox - sin Px)

The expressions for the stresses in the shell are, accordingly,

6M
h .* e-AX (sin Ox + cos Px)

To Zh0 -Px23

-I- P- a (coo Px - sin Px) Y (sin Ax + coo Ox)

or, by introducing the notations of Eqs. (A. 3. 13) and (A. 3. 14), viz.,

0= e'PX cos Px (A.3.13)

n3 x (sin Ox + cos Px) (A.3.14)
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and defining

P4 e•px (coo Px - sin Px) (A. 4.7)

we find

6M
ex -- p" o(A.4.8)

h2 3

ff 0 a4 n3)(A. 4. 9)
2M

ur - (A.4. 10)
2P D

and

Aj
0 "2 (A. 4. 11)
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5. Short Circular Cylindrical Shell Bent by Forces Distributed

Along the Edges

(a) Equal Edge Forces.

QO QO

0

in the case of shorter shells loaded such that no pressure Z is distributed
over the surface of the shell, the deflection equation (A. 1. b) can be put into

the following form by the introduction of hyperbolic functions in place of the

exponential functions. Thus,

7J. - C~ X S.-IX+ X-%XO X + o 4;If x+C CAxois.

(A. 5.l1)

By selecting the origin of coordinates to be at the middle of the cylinder, it is

readily aeen that Eq. (A. 5. 1) must be an even function of x. Accordingly,

cC z=C3 = (A. 5. 2)

and Eq. (A. 5. 1) reduces to

U r = 1 CISin Ox inhOx + C4 Cos Px cosh Ox (A.S. 3)
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The constants CI and C4 may now be determined from the conditions at the

loaded end x 1 1/2 which may be written

D A' u0 -0 (A.S. 4)

Performing the above operations, there are obtained

0 sin PIsin 1

S= 1(A. 5.5)C4 -ý-sinl+ sinh PI)

Equation (A. 5. 3) then becomes

2 z -- --;xS;%P + eo.¶-- C-SIX c.13%o-SUIAp2)

P 3

(A..46)

A. 14



The successive differentiations of Eq. (A. 5.6) are

ýA. .,7)

cli =. Q, _ __ _ _ __ _ ___I__ _ __ __a_ _ _

D -. 1,

P6o -Cos Y- + cos 14P

(A.S. 7)

The deflection and the slope at the loaded ends are therefore, respectively,

0 coshP1+Co
Ur 1 3 ~sin 01 +uinhp
(x=*. ZP D(

~ r0 (Sinh P1 -sin

and the expressions for M x, MV Q and N 0become, respectively,

(cont.)

A-15



Me='--cw•'-L ~ , s4 .e ue,,L= 1 (A'. ,9

4Q-z . Pa 11;J IS4,13 + , or .• fttO CVj

P . 2 Iftiu.dp

Hence the stresses in the shell are, respectively,

S (A.5.1o)

Ire z C-s%*P2 :.%P%

- ~ti :.ý xs...Sf caf e -516,.i~*)

Lot us now define the foUowing parameters:

sn = s in s Ox

n6 = sin Pz cosh O3

S= coo Px sinh Ox (coot.)
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n8 = cos Ox cosh 3X

sin sin P1

'l3=sin P31 + sinh AlS.I acos • osh

o~e--y [ .(• + sinih ej -girt) P1 . 3

a13  sin P1 +sinh P1

Then the expressions for the stresses in the shell become, respectively,

lZQ

=* 011z (A.5.l1Z)

403

W 0-To [pauns,+as%"I)d W asn, -Tonl,)l IA.5.13)

and the expressions for deflection and slope are, respectively.

UrT IDA 11 "AdZ (A. 5. 14)

PD

which become, at the loaded ends.

u r I =4 (A. 5. 16)
(x=*) ZP D
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0

(b) Unequal Edge Forces

oQZ

T 0

In this case, the four constants of integration of Eq. (A. 5. 1) will be evaluated

from the following boundary conditions:

(o& .,- -D ,.. _o ,,..,

D- (A. 5. 18)
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Specifically, they are

(A. 5.19)

These values of ci (i =1, 2. 3, 4) may now be substituted into Eq. (A. 5. 1)

to give

"=A s3. (QsQ2 +~~J

'2 +

(A. 5. 1)
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The successive differentiations of Eq. (A. 5. 20) are

2P D(,sM 4,f-s,.it) '"

@~ ~ ~~ ~~A S.- 2:,4 1)•• ""s,

",c--.N -zz~ - ,do '-*,-.-f,,

d..l

+ A- +

-A--



On the other hand, the deflection and the slope at the loaded end where
x = f will be

(A 5. 24)

o 4~qft.zuzi~ (A.S. 25)

The expressions for MX. Mo, QOx and Nd may now be easily obtained by
substituting the expressions for ur, d2 u r/dx. and d3u r/dX3 fromEqs. (A. 5. 20) and (A. 5. 21) into Eq. (A. 1. 7). Of particular interest to

our study are the stresses in the shell. These are found to be

L.S

A-) c Oliz
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aI,

+ (~a ".":"c'4s;,. • [ .(o"il "'"aI -,s9.tr o.,lI") t

Using the parameters 152, "6' "7' "8 defined in Eq. (A. 5. 11) and introducing

the following additional parameters:

A-FZI

osot fr ~SZP 1Vtp

(A. 5.26
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We find the expressions for the stresses in the shell to be

, 
(A.5.3 . )

The expressions for deflection and slope are correspondingly

+ (A.S.,30)

and at the loaded ends, the deflections and slopes become

- -g ()(A. S.•3,1)
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-.J

"2 "z+ IB ) (A.S.3z)

0 =(Z" g ., .. - .l,•,Q 1 ) (A.S.33)

6. Short Circular Cylindrical Shell Bent by Moments Distributed

Along the Edges

(a) Equal Edge Moments

M.

Again, in this case, Eq. (A. 5. 3) is applicable. The constants cI and c 4

may be determined from the following boundary conditions:

= ,..• = M

-('"-• = ,•(...6.l,

.A
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Specifically, they are

cI= - , ,-,,• ÷,e 2

C4m - ( z:,;,) (A.6.z)

The deflection equation for the middle surface of the shell is then

•'=,(,••,pl÷'"H)(A. 6. 3)

The successive differentiations of Eq. (A. 6. 3) are

- rn z,.(o.,s., cus-hl-,.fz,,'s o-e.ij :,-F.,ew•)

CAA V,( 4 +~4 OVC4 afCm4-x -( g4

- (A. 6. 4)

"( 5+



The deflection and slope at the loaded ends are now obtained by substituting

i 1/2 for x in the above equations. Specifically, they are

V(& 3%-1- - (A. 6. 5)

The stresses in the shell are, respectively,

4r. W.,

Using the parameters 115 , 6, 7' as, fa 13 defined in Eq. (A. 5. II), and

introducing the following additional parameters:

pi 4,, s o-,

AAZOL=
II :,.ft4 S3.*j1-, (cont.)
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" "5--- ,*0 -e4•t, (A. 6.7)

We find the stresses in the shell to be

I" .l,' ).R- (.Ll• L-.•)II (A. 6.8)

All (A (A. 6. 9)

together with the following expressions for deflectio-n and slope:

L4ZFjff l. ~ ,) Iy , •6A) (A.6. 10)

e=. - RIA 4 (A. 6. 11)

The corresponding expressionsfor deflection and slope at the loaded ends

* are then, respectively,

-L(..½ = - ..c •' fA.6.12)

A.-Z7



j

(b) Unequal Edge Moments

a.

0j

Here, because of the unsymmetrical loading, Eq. (A. S. 1) must be used,
and the constants of integration will be determined from the following

boundary conditions:

(X•" 0

VA ) = -

Io (A.6. 14)
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Specifically, they are

zpo
•,= % M, •(iu•-P e"I s + , c.. i,-.'.r- ,(. cmt, f* * es E)

c.- zM s"•t :(lP - M,(s';"t 4s',*Lp•)

ZD ('C4:~t (A. 6. 15)

To recapitulate, the deflection Eq. (A. 5. 1) is

IM.a C, I 1"ft:6 4 CIL S,1FeAlqz C aCim?2s-,L ý%* Ce~spLeb.?xp

with successive derivatives of

S- ( cIfx 4 , S-X 9.L. •,X)- (,p•. sI-..puf)
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"The deflection and the slope at the loaded end where x = 0 are then

N--r C+

2M~2~,~L ~ + (A. 6. 16)

(A. 6.17)

and the deflection and slope at the loaded end where x = I are

r . _ (A.6. 18)

4• L4  " •.:, a .•,ft -,,.R)J

(A.6.19)
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The stresses in the shell are, respectively,

Or- F ( tf 04%P C2 1.~ ".x 3; X-C 3 .. fLOl2
04.U. C4.

+ .4p ;1Pf cmb~t)- Mj(e*SPiS"PE f* +~~L

(- •,e.,Ib,•-... ., " cs•"•e~. -'i - ,

I- 1 S i-- • it-l s,~r,_.

(A. 6.A0)
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Using the parameters n, a 6' a7' 18 9 defined in Eq. (A. 5. 11), and 020,

D21 defined in Eq. (A. 5. 26) and introducing the following additional

parameters:

.a. - .,kot cS t.4. t taui

I,• -- (A. 6. 2Z)

We find the stresses in the shell to be

± (Mf~~fl.)fc4. 7 .(M.AzzZhitA9)Afi4-M f1 8  (A. 6. 23)

all

The expression for the deflection and slope then becomes

LVI (A. 6. 25)

- I, (A.+-,a,)] (A. 6.26)
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At the loaded ends, the expression for the deflection and the slope becomes

e(-..t - ((A,...- z .. ,) (A.6. z7)

(M( 0) - :v (A. 6.30)
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B. JUNCTURE SHEAR FORCES AND BENDING MOMENTS

I. Two Long Cylindrical Shells of Unequal Thicknesses

-F t t t f tt tt t
T~t*~- "t

zo.

Fig. B. 1. 1. Two Long Circular Cylindrical Shells of
Unequal Thickness Under Internal Pressure

Under the action of internal pressure, the circular cylindrical shells will

extend radially, each by a different amount due to the different thicknesses.

However, in the actual vessel, the two cylinders are kept together and strain

compatibility at the junction indicates that there must act shearing forces Q0

and bending moments M uniformly distributed along the circumference and

of such magnitudes as to eliminate this continuity.

Q.

Fig. B. 1. 2. Forces and Moments at the Junction of the two Long
Unequal Thickness Circular Cylindrical Shells

A
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The stresses produced by these forces and moments are called discontinuity

stresses. This condition is illustrated in Figure B. 1.2.

To determine the magnitudes of 00 and Mo, it is necessary to have the

appropriate formulas for long circular cylindrical shells bent by forces and

moments distributed along the shell edges. These formulas are readily

available in many texts on shells. Thus, from Reference 4, the deflection

and rotation produced by the loads p, Q0 and M are:

(a) For Cylinder No. 1:

g;= (Bl2

(b) For Cylinder No. 2:

M t (B..,3)

01.- -QzeIme) (B.1. 4)

where 6 = radial deflection of middle surface at junction, positive outward,

inch.

6' = rotation of middle surface at junction, positive as shown in Fig.

B. 1.3.
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4 Ehi 3( - v2) 2
_ - 22 (i 1,2)

I 1

Eh.
3

D. 121- x (i= 1,Z) (B.I. 5)D 12(1 -V•-

a = mean radius of curvature of the circular cylinders;

p = internal pressure, psi;

E = modulus of elasticity, psi;

v = Poisson's ratio

Q0 = uniformly distributed circumferential shearing force at the

junction, lb per inch;

M = uniformly distributed circumferential bending moment at the

junction, lb per inch;

C9

V 0-SLme M.([o

Fig. B. 1. 3 - Signs Convention for Middle Surface Radial
Deflection and Rotation at Junction

For strain compatibility, we must have

6 (for Cylinder No. 1) = 6 (for Cylinder No. 2)

61. (for Cylinder No. 1) = 6' (for Cylinder No. Z) (B. 1.6)
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Hence

*EV 1 2

I (zp,•-,t.) =.--(-K.

z12o

from which

IG 0. 1Epl t. 7.)

••I "\I)

These formulas for Qo and M0 may be simplified to the following dimension-

less form:

) (B. 1. 10)

where c = thickness ratio hl/h,.

A-37



2. Two Long Cylinders of Unequal Thicknesses and Mismatch of

the Middle Surfaces

I7 ,
OLI

Fig. B. 2. 1 - Forces and Moments at the Junction of the Two Long Unequal
Thickness Circular Cylindrical Shell with Mismatch of the
Middle Surface

J
Analogous to the analysis of Case I, we have

(a) For Cylinder No. 1:

( 2. 1)-.)

-2 OolI

(B.2.2)

(b) For Cylinder No. 2:

2 P.; 04 
L
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S -(Q- z3map%) (B. Z.4)"=".2 t -

where M, 1 and Mo0 2 are the uniformly distributed circumferential bending

moments at the junction for cylinders I and 2, respectively, and are related

to each other by the following equation:

I

M M 2 " 2"dpam (B. 2.5)

where

1

am =(aI + a.) (B..b6)

If we now substitute Eq. (B. 2.5) into Eqs. (B. 2.3) and (B. Z. 4), we obtain

for cylinder No. 2,

Again for strain compatibility, we must have

6 (for Cylinder No. 1) = 6 (for Cylinder No. 2)

6' (for Cylinder No. 1) = 6' (for Cylinder No. 2)
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Hence,

from which

o 2L •,-,A,,+ )+ =,,><,-n7.(E 0)
-+/

2-V ( V +__ , ,,.._
Te-- Q(4.-..2)•10) ,-,- 0kr -)

Equations (B. Ia. 9) and (B. Ia. 10) may be put into the following convenient

forms:

- -,C-- + 4 C (C +
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(C, ,,../t Cz r-V 7

Mo1,,= M, + C1 C1 V^.

where c a thickness ratio hi/hz

I.= middle surface radius ratio aI/a2

Observe that the above equations are developed for al< a2' If aI >a2, then

d becomes negative, and the components of shear and bending moment due to

the mismatch alone of the middle surfaces change in direction.

For thin shells, a/h is large and I can be taken as unity for all practical

purposes. The equations for Q00 Mo 1 then simplify to

-' .-I )( c5÷ + + C1A.P I e'(•V" + 1)
2312(c1I)a,-C ''•Tt 1)

(cZ'(C T) 22"(c I)
4 pll (C - + 2C ) (C- + 1)' 

)
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3. Long Circular Cylinder with Circumferential Ring Stiffeners

Fig. B. 3. 1 - Long Circular Cylinder with Circumferential Ring
Stiffeners under Internal Pressure

Basic Assumptions: (a) The ring stiffener spacing is such that the influence

of one does not extend to the next.

(b) The term "a" will be taken to be the outside of the

shell instead of mean radius. For shells with a

large radius to thickness ratio, the effect is negligible.

V4 M.

N,

Qt Q.

Fig. B. 3.2 - Forces and Moments at the Junction of the Circular
Cylindrical Shell and the Circumferential Ring Stiffener U
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Boundary Conditions: (a) The radial deflections of the shell and ring are

equal at the junction.

(b) The slope of the shell adjacent to ring it zero.

Analysis: The deflection of the long circular cylindrical shell at the junction

produced by the loads p, Q0 and M is, from Reference 4,

2

-= (Mo0 -0 + - v) (B.3. l)

The radial displacement of the circumferential ring stiffener under the action

of the forces 2Q and p may be readily obtained from the plane stress solution

of a thick-walled cylinder under the action of internal pressure. Specifically,

at the ring-shell interface,

a(ZO + pc)b' + a2  +

\o b--a /

In accordance with boundary condition (a), we can immediately write

2 a(Z 0 0+pc) /b 2 +a' + 33)

2P 3 D -00a I÷P C -

The slope of the circular cylindrical shell adjacent to the ring produced by

the forces p, Q and M is, from Reference 4,o o

1

6' = -(2PMo- Oo) (B.3.4)
ZPZD

This, in accordance with boundary condition (b) is zero. Hence

Q 0= ZPM 0(B.3. 5)
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Equation (B. 3. 5) may now be substituted directly into Eq, (B. 3, 3) to give an

explicit expression for the circumferential bending moment M . Specifically,
o

1> L21. -It--•'•"•71(B. 3. 6)

+a-

Q =ZAM (B. 3.7ý

4. Long Circular Cylindrical Shell with Many Equidistant

Circumferential Ring Stiffeners

H(,.,•t\S L• j- h'• C ('rye)

LLL1 L2W Ct

Fig. B. 4. 1 - Long Circular Cylindrical Shell with Many Equidistant
Ring Stiffeners under Internal Pressure

Basic Assumptions: (a) The ring stiffener spacing is such that mutual

influence becomes important.

(b) The rings are all of the same size and design.

A
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(c) The term "a" will be taken to be the outside of the

shell instead of mean radius. For shells with a
large radius to thickness ratio, the effect is

negligible.

Boundary Conditions: (a) The radial deflections of the shell and ring are

equal at the junction.

(b) The slope of the shell adjacent to the ring is zero.

Analysis: As a consequence of the proximity of the ring stiffeners, the long

cylinder must be treated as composed of a number of short

cylinders, each of which has a length i. The discontinuity forces

and moments at the junction of the short circular cylindrical shell

and the circumferential ring stiffener may be taken to be identical

to those shown in Fig. B. 3. Z. In this case, however, the deflec-

tion of the short circular cylindrical shell at the junction produced

by the forces p, Q and M is, from Reference 4,

+.i. a "' )~4%~f +u 311)

The radial displacement of the circumferential ring stiffener has been

calculated previously and is
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In accordance with boundary condition (a), we must have

-QAg Z~~'CO51%F14 :::S )+ 2VASOIO( S.: t. ;ý'p

(2 6.+pC)a (6 t a +

(B. 4. 1)

The slope of the short circular cylindrical shell adjacent to the ring produced

by the forces p, Q and M may also be obtained from Reference 4. Specifi-

cally, it is

2 (9A s S;j3a ( 1CO54 -

This, according to boundary condition (b) should be zero. Hence

GO= !L) VA (B..4..i)

If we now substitute Eq. (B. 4. 2) into Eq. (B. 4. 1), an explicit solution for the

circumferential bending moment M will be obtained. Indeed,

-(B. 4. 3)
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where sinh O sin 01f13 s'inh P1! + sirn 1

cosh el + Cos B1
14 sinh P1 + sin Im (B.4.4)

cosh el - cos P11't5 :sinh P1 - sin.pi!

Using the above notation, we find 0 0 20n 5Mo (B.4.5)

5. Long Circular Cylindrical Shell with a Flat Head Closure

t4. tWA.

SIfI. o

I,~

Fig. B. 5. 1 - Long Circular Cylindrical Shell with a Flat Head Closure
under Internal Pressure. The forces and moments are
shown in the positive sense above.

The following compatibility equations between cylinder and head are obtained

from Reference 5, and are modified to conform to the notations of Fig. B. 5. 1.
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M Qo M Q0 0b + -- b b + b +b (B.05.2
-~ 4  5 ~ 1  Tp-a 2 3 ~JP

4pa Tp, 4pa

where

6al V'b 6 (1- v)
-Iaz h1 h 2

a =2 (l - v) b 2 3(1 - v)

2P7-ah,

3a 3(l - v)

2 16p ZhIh 2

S =-z 2 h22 b = I,•- )2
5 vi- 5 -Zj

h 2 3(1 - vz) (B.5.3)
6~ a h1

Solution of Eqs. (B. 5. 1) and (B.5. 2) yield the following expressions for 0o

and Mo. Specifically, they are:

M = 4pa2 [(a 4 -a 3) (b. -b 5 ) + b3 (a. - a6 ) 10 1(al- as) (b2. be). (az. a6) (bl. b4 ) j (54)

Q =2pa[ (a3 -a 4)(bl -b 4)+b 3(a5 -a 1,)0 .2 (a,-a 5 )(bz-b 5 ) -(a 2 -a 6 )(b, -b 4 ) (355)
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6. Short Circular Cylindrical Shell with Equal Thickness Flat

Head Closures

Fig. B. 6. 1 - Short Circular Cylindrical Shell with Equal Thickness
Flat Head Closures under Internal Pressure

The signs convention and notations of Fig. B. 6. 1 will be used in the present

analysis. For the case of a short cylindrical shell, the radial displacement

(positive inward) 6, and the rotation -61 at the junction due to the forces p,

Q and M 0 are, respectively,

I___ _- 4M9B3 CLL Q C%3
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The dimensionless form of these two equations may be chosen to be

= a a + ~ :(B. 6. 1)

_ _ _ _ _6 4. (B .6 . Z2)

where

a - ---

44

6 =- , ) (B.6.3)

These "influence numbers" may be substituted in lieu of the influence

numbers a 4 , a 5 , a 6 , b4 and b 5 for the long cylindrical shell in Eqs. (B. 5.4)

and (B. 5. 5) to give the expressions for the shear force and bending moment at

the junction where the flat heads abutt the cylindrical shell, respectively.
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Specifically, they are

[e=- • ý (4-)' ) +----(a'-• 1 B. 64)

= 4r (c~~)(bj (~1~~G)6,-4)J

o= i (0 3 6- 54(6,- 64)+ 63(' ) B..6.5)

Defining

C(R -eq3 (B. 6. 6)

and substituting Eqs. (B.4.4) and (B. 5. 3) into Eqs. (B. 6.3), we obtain the

following relationships:

C14 = 4

OG 0

6 6 4.

6' S 65 •(B. 6.7)
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Equations (B.6. 7) express the correspondence of the influence numbers

between the long and short circular cylindrical shells. Substitution of these

relationships into Eqs. (B. 6.4) and (B. 6. 5) yields

M*'- ~ 4p~[ (04- 03)( 6a- 65a ,) + 65( a 2- ar 4

QL= 2 [ (s 4 (6r 4'a 6(aa ' (B. 6. 9)
(0 [ - ca11%X 627 65il,3) - (a2- a6"(6,-6-Qv)

7. Short Circular Cylindrical Shell with Unequal Thickness

Flat Head Closures

M, Mt AI

~~4.

Flat Head Closures Under Internal Pressure
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For the short cylindrical slt Il, the radial (Iisplacvnent (positive inwa rd) b,

and the rotation -8' at the junction wherv x 0 dlt to the fi-rc.s p. Q O,

M1, and M are, ;espectivelv,
M~. 2

+ -z
-M1 (S,;-,. Q , •..') - 2•M,,.. I.;,.,Q - e (z-z.,) B71

- =(,.4•Z•- a, .. lp-. ZEA)

- - (s ,•,tQ .. ,I) * vz

1> (B..~ 7.

For the junction x = I, the radial displacement and the rotation are,

respectively,

+. .;.t t- M •.(sM•' -) f ..s Iz -.,) (B. 7. 3)

+

(B. 7. 4)
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Equations (B. 7. 1), (B. 7. ), (B. 7. 3). and (B. 7. 4) inay he a rranged in theJ

following diniensionlcst; forms:

IA2-\ , it 1  If S.p 3,'Ip1 \
______~S; IF--, -- z ~

+ ±!4 Lo~PS~3~(B. 7.5)

+ M z(.'p ' s4~

(B. 7. 6)
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'•,oU =- -,k , i L__1 ,ep-•.#)

•J)'A •4 .- -- -''7-
+J

*1* " . c , : .•p -, . i. t3 /1
4rl

+2 :sih Ij -sin • )JB 77

+ ck (B. 7. 7)

Let us now define the followi ng parameters:

sinh2 zAl + sin 2 of
22 inh2 zAl - sin2 zP1

sin PI sinh Of

sinh2 11 - sin2 PI
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sinh Of cosh Of - sin O1 coo 131
"sinh z3P - sin2  PI

cos PI sinh P1I- sin 01 cosh 1I
18 sinh2 131 - sin2 Of

sin Of cos 13 + sinh 1O1 cosh 13O
1 7 -- sinh2 131 - sin2 1P1

sin 13I cosh P1 + cos O1 sinh 11 (B.7.9)
19 sinh2 131 -sin 2 1(7

Furthermore, let

h1

h

h3

A3 h3 Pa2

h3
A6 = - P a

6 h a

A7 = -2pa

152A s h" 1 2
2) (cont.
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1 N(N2.) (B.7.10)

Equations (B. 7.9) and (B. 7. 10) may now be substituted into Eqs. (B. 7.5)

through (B. 7.8) to give the following set of dimensionless equations-

- L4 0/ 4 ra"

IPNA6+ -L(B

111" 
zra

-~ ~ 4 4, ' = •-• (-ZA.,4¢ + '-a,., + 2••• ,

4 4r,ý
+ , (B. 7. t1 Z

+ (Bs. 7. 3)4
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From Reference 5, we find the following dimensionless equations for the

heads:

4c 4 It t AI Is(B.7. 15)

- k " I- + (8.7.16)

• 3•-- - - (B.7.17)

3~Zm ~ % *(B. 7. 18)

where

= 2(0-v)

~= -sO-•,)

Set (IV)

z C i-t (cont.)
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3 (--) (. 7. 19)

By equating Eqs. (B.7.11) with (B.7.15), (B.7. 12) with (B. 7. 16), (B. 7.13)

with (B.7. 17) and (B.7. 14) with (B.7. 18), we arrive at the following set of

equations in M V M2 , Q V and Q2 " Specifically, they are:

4

2'

(B. 7.20)

E~quation (B. 7. 20) may also be conveniently expressed in matrix form by

defining

,Qf v AN) J +cot.)1IzJ IV
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+'1

4 pO= 4 4-ra, 2p a 2rA

________7 p%715 N Z; Nis ___At__4

,4pe, .. 4r2 2p- 2 rc.

L 4TP z 4rct z 2'1a 21(B. 7.21)

Then,

and ,.l

lul = wf'Ivl (B. 7.22)

8. Long Circular Cylindrical Shell with an Ellipsoidal Head Closure

•t.

I ._. _. _ __

Fig. B. 8. 1 - Forces and Moments at the Junction of the Long Circular
Cylindrical Shell and the Ellipsoidal Head Closure under
Internal Pressure
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_ _ _ _ IIII III IIIIIII

+Q°.

Fig. B. 8. 2 Signs Convention for Middle Surface Radial Deflection
and Rotation at the Junction

The radial deflection and the rotation of the long circular cylindrical shell at
the junction produced by the loads p, Q., and M are, respectively

((B. 8.2)
z PC". (zEA, .)(.82

where
E1,1

(B. .3)
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The radial deflection and the rotation of the ellipsoidal head at thc junction

produced by the loads p, Q0o and M° are obtained from Reference 6, and are,

respectively,

3 ~ ~~~ ~ 9 CM)+2- V) (B. 8.4)

(B.8. 5)

where

p.,. .(Bs.86)
1z (I 22-

For strain compatibility, we must have

6 c
C e

6c 6e (B.8.7)

Hence,

- D- 2 E Vz ( 
-

Z&(Z_

P2C DCzf3,.,Q.) - Co- .. )
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from which

(B. 8.8)

Simultaneous solution of Eqs. (B. 8. 8) and (B. 8.9) yields

•" 2E U, -- I .L_ _ _ . tL A:t:,,- t (B. 8. 10)

•,--•c, .P., Pc .• - .•-''
4 (B.8. 11)
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I

These formulas for M and Q0 may be put into the following dimensionless

forms:

MI. ___ +__,_ ____
1~~~A2~~~ L(l(k4I B8 2

-- (B. S. 13)

9. Short Circular Cylindrical Shell with'Equal Thickness

Ellipsoidal Head Closures

6

Fig. B. 9. 1 - Short Circular Cylindrical Shell with Equal Thickness
Ellipsoidal Head Closures under Internal Pressure
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The signs convention and notations of Fig. B. 8. Z will be used in the present

analysis. For the short circular cylindrical shell, the dimensionless forms

of the equations for radial displacement 6c and the rotation 6' at the junction

due to the forces p. Q0,, and M0 are given by Eqs. (B. 6. 1) and (B.6.2),

respectively. These are listed in the following forms:

E62 C t M . &( %3t o a(S.9.0

• -- "+ (B. 9. 2)

Ct ,11, 4 * -.,2.a ra•• is

where a4 , a5,. a 6, b4 and b5 are as defined in Eq. (B. 5.3); 0 13 by Eq. (B.4.4)

and n 14 and 1l1 5 by Eq. (B. 6.6).

For the ellipsoidal head closure, the radial displacement 6 e and the rotation

6' at the junction due to tlhe forces p, Qo, and M are given by Eqs. (B. 8.4)
e 0

and (B. 8. 5). These two equations may be written in the following dimension-

less forms:

-- Ž• a + a,+ a, (B. 9.3)

1 - 6 (B. 9.4)

where

hz603£2, -

J= 'V) (cont.)
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I

J

61 2%

(B.9.5)

In accordance with the strain compatibility equations (B. 8.7), we have the

following equalities:

4 1'34 6, +4 2

M__. 6A,+ (R6_. 6 M+ _ .4p" =°b•'= P• • + --rp2 -

from which

.(,• �,•.CA - •3)(.6.,- (6 ,-,,,a1( ,-,

6A - 66Ats) (B. 9.7)
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10. Shrt Circular Cylindric-al Shell with Uncqual Thickness

Ellipsoidall Head Closures

)AM, M, NO

x= a

Fig. B. 10. 1 - Short Circular Cylindrical Shell with Unequal Thickness
Ellipsoidal Head Closures under Internal Pressure

The signs convention of Fig. B. 8. 2 will be adhered to in this analysis. For

the short circular cylindrical shell, the radial displacements and rotations

at the junctions where x = 0 and x = 1, respectively, due to'the forces p, Q1 ,

a2' Mi. and MZ are given by Eqs. (B.7. 11) through (B.7. 14) in dimensionless

forms and will not be repeated here.

For the ellipsoidal heads, the corresponding dimensionless forms of the

radial displacements and rotations are:

-A~~+-~%l. 1-(B. 10. 1)
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- |

+\7  s - (B. 10. 3)

Li: sn M( B. 10.4)

where

All 2a

A,

ok

A13 = 2= -

,T- I

Ale 5TI, A 2 ,

4 , _ £1., = ___-_,_Pcz~

a I

4 - X 3  -3 3(1 -,V)
4a Z D.5 C " (cant.)
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3
_ _ (B. 10.5)S=z

Equating now Eqs. (B.7. 11) with (B. 10. 1), (B.7. 12) with (B. 10. 2), (B. 7.13)

with (B. 10.3), and (B.?. 14) with (B. 10.4) in accordance with the strain com-

patibility equations (B. 8.7), we arrive at the following set of equations in M,

M2 , 0O, and Q2 . Specifically, they are:

Let us now define the following matrices:

41-# 0 J

(cont.)
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-2A.&D.Qz NA.t; PN14 NgI A1011- NSt

"[W] 4"1= 2=A 21r

P,71;.f-A7 _~i NAZA1 ZN_____

- Z,,°",f),1r 7is P4. (B. 10. 6)

+ra% 2ro

Then the four simultaneous equations listed above may be written in the form

[w] lul =IvI

from which

lul = [wJ ' vI (B.10o.7)

The coefficients Al through A10 in the above equations are defined in

Eq. (B. 7. 10) where it is understood that P PC. The functions f)2 through

119 are identically defined in Eq. (B. 7.9).
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11, l, ,iig (irt',olir C_ ylincIri(';! Shell with a lihtIini pherit-I

"lit.&(I "i osti""

M. M.

Fig. B. 11. 1 - Forces and Moments at the Junction of the Long Circular
Cylindrical Shell and the Hemispherical Head Closure
under Internal Pressure

S+4.

Fig. B. 11. 2 - Signs Convention for Middle Surface Radial Deflection
and Rotation at the Junction
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The discontinuity forces Q and , h t h

circular cylindrical shell and the hemispherical head closure under the

action of internal pressture can be readily obtained from Eqs. (B. 8. IZ) and

(B. 8. 13) developed for the case with the ellipsoidal head configuration; it

being necessary to replace the quantity a 2 /b 2 by unity. In so doing, we find

(B. 11.1)

(B. l1.2)

12. Short Circular Cylindrical Shell with Equal Thickness

Hemispherical Head Closures

Fig. B. 12. 1 - Short Circular Cylindrical Shell with Equal Thickness

Hemispherical Head Closures under Internal Pressure
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K) jThe formulas dvcvlopcd for the cast, (if the short circular cylindrical shell

with equal thickncss ellipsoidal head closures are readily adaptable to the

present configu.ration by substituting unity in place of the quantity aZ/bZ.

For example, the quantity a 3 in Eq. (B. 9.6) for the bending moment Mo and

in Eq. (B.9.7) for the shear force o must now be replaced by

I

a3  I (B. 12.1)

13. Short Circular Cylindrical Shell with Unequal Thickness

Hemispherical Head Closures

asQz QI

• ~~t~l! t z I t
V44

Fig. B. 13. L - Short Circular Cylindrical Shell with Unequal Thickness
Hemispherical Head Closures under Internal Pressure

Formulas (B. 10. 6) and (B. 10.7) for the determination of the bending moments

M and M2, and the shear forces 1 and Q2 developed for the case of a short

circular cylindrical shell with unequal thickness ellipsoidal head closures are

also applicable to the present configuration with the exception that the quanti-

ties AI 3 and A1 6 defined in Eq. (B. 10.5) must now be replaced by

A1 3 At 6 = -A(1-v) (B. 13. 1)
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I

14. L.ong Circ.lar Cyliid rih'al Shell with a Conical head Cl ouir.

QQ.

Fig. B. 14. 1 -Forces and Moments at the Junction of the Long Circular
Cylindrical Shell and the Conical Head Closure under
Internal Pressure

C.o

144. 
OM.

t.

Fig. B. 14. Z - Signs Convention for Middle Surface Radial Deflection

and Rotation at the Junction
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The radial deflection and the rotation of the long circular cylindrical shell at

the junction produced by the loads p, o, and M in accordance with the signs

convention of Fig. B.14.2 are, respectively,

(, =- . Q.) - (2-V) (B. 14. 1l

' • (2p•M.÷ +.
2f= l~(B. 14. 2)

wnfere

3.. if (B. 14.3)

The dimensionless forms of Eqs. (B. 14. 1) and (B. 14.2) may be chosen to be

-- a.'l a4 +a; (B. 14.4)

IL

C. - 6 (B. 14.S)
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where

a,=

a - 2 , CQ )

For the conical head, the corresponding dimensionless forms are:

4. -j , +7- ,• 9 + C1-3  (B. 14.7)

The quantities al, a2 , a 3 , bi, b2 , and b3 are dimensionless "influence

numbers" for the conical head and can be obtained from either References 2

or 3. In the notations of Fig. B. 14. 1 and the signs convention of Fig. B. 14.2,

these influence numbers become

-ýs iu-A

(cont.)
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a-- " A \:Z.

612Ch ac

6 2 -

6S re0 V CSC (+6 A&-&*t Seca,- seree (B. 14. 9)

where

C Ao Cb*sec. A÷(B. 14. 10)

ror strain compatibility, we must have

c co

51 1 3' (B. 14.11)
c co
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Hcnc,•

4 Qoý . t-5 -&1* -r q= i 341 *

M. Q4+•

4rAA 2L-

J b4 ...61+ .--6S -l, 4 63 *6

2 ra (B. 14.13)

from which

Mi. "-4r.Az f(Q4 ) .( •.,- .1 (ai. (B.1. 14.14)

*=2 j,c F .6 (,a,+A 4 ,) +(OS+ Ct)( 6 4 :.. 6, 1B 4 5L (a,+a,)(b,-•). (1b,-,)(a,* 1• ,.4.15)

The Bessel-Kelvin functions ber, bei, ker, kei, and their first derivatives
have been extensively tabulated by Lowell (Ref. 7). Higher order Bessel-
Kelvin functions are related to the aforementioned functions by the following
recurrent formulas (Ref. 8):

I (- •, 6" (cont.)
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-Mr

6e;,+, AC;

bev, , = i i i IeI i+ 6e; I

'i-

Using these recurrent formulas, we find that the Bessel-Kelvin functions of

order two are related to those of order zero by the following expressions:

6 Z

6- + - ' (B. 14. 17)
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15. Short Circiltar Cylindrical Sheli with Unequal Thickness Head

Closures of Ellipsoidal and Conical Shape

Fig. B. 15.1 -Short Circular Cylindrical Shell with Unequal Thickness
Head Closures of Ellipsoidal and Conical Shape under
Internal Pressure

The signs convention of Figs. B. 8. 2 and B. 14. 2 will be adhered to in this

analysis. For the ellipsoidal head, the dimensionless forms of the radial

displacement and rotation have been-derived earlier,- and are:

- - Trtt Nil. t (B. 15.l1)

B 3  (B.15. ")

A-8O
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where

IDI~ --- 9
zPCa

4

For the short circ-ular cylindrical shell, the dimensionless forms of the radial

displacements and rotations at x = 0 and x = I due to the forces p, 01 1 z'

MI , andM are, Er om Eqs. (B. 6. 11) through (B. 6. 14):

M2.

'I" (4.l.) + AL-_ (B 15

O-
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+ 7,, (B. 15. 5)

A. el +

___= -2 ~ 4-•~ (z ~~PI)•= P

S. . SA-S=.Z±.(.

4?a

where

=I, L

P%z3

NS =- 2 h

~ 
(Cont.)
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1 S.= P --(.')Z

m c.5 3I ll =S'Sp ' P A .

.e _ S,,%Af

Sý' S (B. 15. 8)

Finally, for the conical head, the dimensionless forms of the radial displace-
ment and rotation at the base"of the cone due to the force; p, Qzo and M2 are
represented by:

- (B. 15.9)
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6- ~ 6 (B. 15.l10)

where the influence numbers a, aV, a3p b1 , b2 and b3 are defined in

Eq. (B. 14.9).

If we now equateEqs. (B. 15. 1) with (B. 15.4); (B. 15.2) with (B. 15. 5); (B. 15.9)

with (B. 15.6); and (B. 15. 10) with (B. 15. 7), and collecting like terms, we will

obtain the following system of equations from which the desirable unknowns

Q1 1 Q29 MI, and M2 can be determined. Indeed,

M,(A7 I (j.; A,.. + 7

+)

Defining now the matrices:

fMi A1 3 - Al'

S0 1lul 01ol IVI -a 3 -A 4  ;(B5.)

10Z I-b3j
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and

A-_ _ _ LA Z" •t - - iS.

A 

•. 

0. 1764jo PALG 2 1 ft

(B. 15. 12]

The four simultaneous equations listed above may be written in the form

[Wj lul = VI
from which

Iul fw[" Ivj (B.15.13)
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16. Short Circular Cylindrical Shell with Unequal Thickness Head

Closures (if Hemispherical and Conical Shape

If the ellipsoidal head of Fig. B. IS. 1 is replaced by a hemi-

spherica head of radius a and thickness h1 , the discontinuity forces Q1 0 Q2.

M and M associated with this new configuration can be readily calculated

by the formulas developed for Case 15. In this case, it is merely necessary

to replace the quantity A1 3 defined in Eq. (B. 15. 3) by

A1 3 = (B. 16. 1)

13 v)

A-Se
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